]> code.octet-stream.net Git - m17rt/blob - m17core/src/modem.rs
Correct maths for setting output filter gain
[m17rt] / m17core / src / modem.rs
1 use crate::decode::{
2 parse_lsf, parse_packet, parse_stream, sync_burst_correlation, SyncBurst, SYNC_THRESHOLD,
3 };
4 use crate::encode::{
5 encode_lsf, encode_packet, encode_stream, generate_end_of_transmission, generate_preamble,
6 };
7 use crate::protocol::{Frame, LsfFrame, PacketFrame, StreamFrame};
8 use crate::shaping::RRC_48K;
9 use log::debug;
10
11 pub trait Demodulator {
12 fn demod(&mut self, sample: i16) -> Option<Frame>;
13 fn data_carrier_detect(&self) -> bool;
14 }
15
16 /// Converts a sequence of samples into frames.
17 pub struct SoftDemodulator {
18 /// Circular buffer of incoming samples for calculating the RRC filtered value
19 filter_win: [i16; 81],
20 /// Current position in filter_win
21 filter_cursor: usize,
22 /// Circular buffer of shaped samples for performing decodes based on the last 192 symbols
23 rx_win: [f32; 1920],
24 /// Current position in rx_cursor
25 rx_cursor: usize,
26 /// A position that we are considering decoding due to decent sync
27 candidate: Option<DecodeCandidate>,
28 /// How many samples have we received?
29 sample: u64,
30 /// Remaining samples to ignore so once we already parse a frame we flush it out in full
31 suppress: u16,
32 }
33
34 impl SoftDemodulator {
35 pub fn new() -> Self {
36 SoftDemodulator {
37 filter_win: [0i16; 81],
38 filter_cursor: 0,
39 rx_win: [0f32; 1920],
40 rx_cursor: 0,
41 candidate: None,
42 sample: 0,
43 suppress: 0,
44 }
45 }
46 }
47
48 impl Demodulator for SoftDemodulator {
49 fn demod(&mut self, sample: i16) -> Option<Frame> {
50 self.filter_win[self.filter_cursor] = sample;
51 self.filter_cursor = (self.filter_cursor + 1) % 81;
52 let mut out: f32 = 0.0;
53 for i in 0..81 {
54 let filter_idx = (self.filter_cursor + i) % 81;
55 out += RRC_48K[i] * self.filter_win[filter_idx] as f32;
56 }
57
58 self.rx_win[self.rx_cursor] = out;
59 self.rx_cursor = (self.rx_cursor + 1) % 1920;
60
61 self.sample += 1;
62
63 if self.suppress > 0 {
64 self.suppress -= 1;
65 return None;
66 }
67
68 let mut burst_window = [0f32; 71];
69 for i in 0..71 {
70 let c = (self.rx_cursor + i) % 1920;
71 burst_window[i] = self.rx_win[c];
72 }
73
74 for burst in [
75 SyncBurst::Lsf,
76 SyncBurst::Bert,
77 SyncBurst::Stream,
78 SyncBurst::Packet,
79 ] {
80 let (diff, max, shift) = sync_burst_correlation(burst.target(), &burst_window);
81 if diff < SYNC_THRESHOLD {
82 let mut new_candidate = true;
83 if let Some(c) = self.candidate.as_mut() {
84 if diff > c.diff {
85 c.age += 1;
86 new_candidate = false;
87 }
88 }
89 if new_candidate {
90 self.candidate = Some(DecodeCandidate {
91 burst,
92 age: 1,
93 diff,
94 gain: max,
95 shift,
96 });
97 }
98 }
99 if diff >= SYNC_THRESHOLD
100 && self
101 .candidate
102 .as_ref()
103 .map(|c| c.burst == burst)
104 .unwrap_or(false)
105 {
106 if let Some(c) = self.candidate.take() {
107 let start_idx = self.rx_cursor + 1920 - (c.age as usize);
108 let start_sample = self.sample - c.age as u64;
109 let mut pkt_samples = [0f32; 192];
110 for i in 0..192 {
111 let rx_idx = (start_idx + i * 10) % 1920;
112 pkt_samples[i] = (self.rx_win[rx_idx] - c.shift) / c.gain;
113 }
114 match c.burst {
115 SyncBurst::Lsf => {
116 debug!(
117 "Found LSF at sample {} diff {} max {} shift {}",
118 start_sample, c.diff, c.gain, c.shift
119 );
120 if let Some(frame) = parse_lsf(&pkt_samples) {
121 self.suppress = 191 * 10;
122 return Some(Frame::Lsf(frame));
123 }
124 }
125 SyncBurst::Bert => {
126 debug!("Found BERT at sample {} diff {}", start_sample, c.diff);
127 }
128 SyncBurst::Stream => {
129 debug!(
130 "Found STREAM at sample {} diff {} max {} shift {}",
131 start_sample, c.diff, c.gain, c.shift
132 );
133 if let Some(frame) = parse_stream(&pkt_samples) {
134 self.suppress = 191 * 10;
135 return Some(Frame::Stream(frame));
136 }
137 }
138 SyncBurst::Packet => {
139 debug!("Found PACKET at sample {} diff {}", start_sample, c.diff);
140 if let Some(frame) = parse_packet(&pkt_samples) {
141 self.suppress = 191 * 10;
142 return Some(Frame::Packet(frame));
143 }
144 }
145 }
146 }
147 }
148 }
149
150 None
151 }
152
153 fn data_carrier_detect(&self) -> bool {
154 false
155 }
156 }
157
158 impl Default for SoftDemodulator {
159 fn default() -> Self {
160 Self::new()
161 }
162 }
163
164 pub trait Modulator {
165 /// Inform the modulator how many samples remain pending for output and latency updates.
166 ///
167 /// For the buffer between `Modulator` and the process which is supplying samples to the
168 /// output sound card, `samples_to_play` is the number of bytes which the modulator has
169 /// provided that have not yet been picked up, and `capacity` is the maximum size we can
170 /// fill this particular buffer, i.e., maximum number of samples.
171 ///
172 /// Furthermore we attempt to track and account for the latency between the output
173 /// soundcard callback, and when those samples will actually be on the wire. CPAL helpfully
174 /// gives us an estimate. The latest estimate of latency is converted to a duration in terms
175 /// of number of samples and provided as `output_latency`. Added to this is the current
176 /// number of samples we expect remain to be processed from the last read.
177 ///
178 /// Call this whenever bytes have been read out of the buffer.
179 fn update_output_buffer(
180 &mut self,
181 samples_to_play: usize,
182 capacity: usize,
183 output_latency: usize,
184 );
185
186 /// Supply the next frame available from the TNC, if it was requested.
187 fn provide_next_frame(&mut self, frame: Option<ModulatorFrame>);
188
189 /// Calculate and write out output samples for the soundcard.
190 ///
191 /// Returns the number of bytes valid in `out`. Should generally be called in a loop until
192 /// 0 is returned.
193 fn read_output_samples(&mut self, out: &mut [i16]) -> usize;
194
195 /// Run the modulator and receive actions to process.
196 ///
197 /// Should be called in a loop until it returns `None`.
198 fn run(&mut self) -> Option<ModulatorAction>;
199 }
200
201 pub enum ModulatorAction {
202 /// If true, once all samples have been exhausted output should revert to equilibrium.
203 ///
204 /// If false, failure to pick up enough samples for output sound card is an underrun error.
205 SetIdle(bool),
206
207 /// Check with the TNC if there is a frame available for transmission.
208 ///
209 /// Call `next_frame()` with either the next frame, or `None` if TNC has nothing more to offer.
210 GetNextFrame,
211
212 /// Modulator wishes to send samples to the output buffer - call `read_output_samples`.
213 ReadOutput,
214
215 /// Advise the TNC that we will complete sending End Of Transmission after the given number of
216 /// samples has elapsed, and therefore PTT should be deasserted at this time.
217 TransmissionWillEnd(usize),
218 }
219
220 /// Frames for transmission, emitted by the TNC and received by the Modulator.
221 ///
222 /// The TNC is responsible for all timing decisions, making sure these frames are emitted in the
223 /// correct order, breaks between transmissions, PTT and CSMA. If the modulator is given a
224 /// `ModulatorFrame` value, its job is to transmit it immediately by modulating it into the output
225 /// buffer, or otherwise directly after any previously-supplied frames.
226 ///
227 /// The modulator controls the rate at which frames are drawn out of the TNC. Therefore if the send
228 /// rate is too high (or there is too much channel activity) then the effect of this backpressure is
229 /// that the TNC's internal queues will overflow and it will either discard earlier frames in the
230 /// current stream, or some packets awaiting transmission.
231 pub enum ModulatorFrame {
232 Preamble {
233 /// TNC's configured TxDelay setting, increments of 10ms.
234 ///
235 /// TNC fires PTT and it's up to modulator to apply the setting, taking advantage of whatever
236 /// buffering already exists in the sound card to reduce the artificial delay.
237 tx_delay: u8,
238 },
239 Lsf(LsfFrame),
240 Stream(StreamFrame),
241 Packet(PacketFrame),
242 // TODO: BertFrame
243 EndOfTransmission,
244 }
245
246 pub struct SoftModulator {
247 // TODO: 2000 was overflowing around EOT, track down why
248 /// Next modulated frame to output - 1920 samples for 40ms frame plus 80 for ramp-down
249 next_transmission: [i16; 4000],
250 /// How much of next_transmission should in fact be transmitted
251 next_len: usize,
252 /// How much of next_transmission has been read out
253 next_read: usize,
254 /// How many pending zero samples to emit to align start of preamble with PTT taking effect
255 tx_delay_padding: usize,
256
257 /// Do we need to update idle state?
258 update_idle: bool,
259 /// What is that idle status?
260 idle: bool,
261
262 /// Do we need to calculate a transmission end time?
263 ///
264 /// (True after we encoded an EOT.) We will wait until we get a precise timing update.
265 calculate_tx_end: bool,
266 /// Do we need to report a transmission end time?
267 ///
268 /// This is a duration expressed in number of samples.
269 report_tx_end: Option<usize>,
270
271 /// Circular buffer of most recently output samples for calculating the RRC filtered value.
272 ///
273 /// This should naturally degrade to an oldest value plus 80 zeroes after an EOT.
274 filter_win: [f32; 81],
275 /// Current position in filter_win
276 filter_cursor: usize,
277
278 /// Should we ask the TNC for another frame. True after each call to update_output_buffer.
279 try_get_frame: bool,
280
281 /// Expected delay beyond the buffer to reach the DAC
282 output_latency: usize,
283 /// Number of samples we have placed in the buffer for the output soundcard not yet picked up.
284 samples_in_buf: usize,
285 /// Total size to which the output buffer is allowed to expand.
286 buf_capacity: usize,
287 }
288
289 impl SoftModulator {
290 pub fn new() -> Self {
291 Self {
292 next_transmission: [0i16; 4000],
293 next_len: 0,
294 next_read: 0,
295 tx_delay_padding: 0,
296 update_idle: true,
297 idle: true,
298 calculate_tx_end: false,
299 report_tx_end: None,
300 filter_win: [0f32; 81],
301 filter_cursor: 0,
302 try_get_frame: false,
303 output_latency: 0,
304 samples_in_buf: 0,
305 buf_capacity: 0,
306 }
307 }
308
309 fn push_sample(&mut self, dibit: f32) {
310 // TODO: 48 kHz assumption again
311 for i in 0..10 {
312 // Right now we are encoding everything as 1.0-scaled dibit floats
313 // This is a bit silly but it will do for a minute
314 // Max possible gain from the RRC filter with upsampling is about 0.462
315 // Let's bump everything to a baseline of 16383 / 0.462 = 35461
316 // For normal signals this yields roughly 0.5 magnitude which is plenty
317 if i == 0 {
318 self.filter_win[self.filter_cursor] = dibit * 35461.0;
319 } else {
320 self.filter_win[self.filter_cursor] = 0.0;
321 }
322 self.filter_cursor = (self.filter_cursor + 1) % 81;
323 let mut out: f32 = 0.0;
324 for i in 0..81 {
325 let filter_idx = (self.filter_cursor + i) % 81;
326 out += RRC_48K[i] * self.filter_win[filter_idx];
327 }
328 self.next_transmission[self.next_len] = out as i16;
329 self.next_len += 1;
330 }
331 }
332
333 fn request_frame_if_space(&mut self) {
334 if self.buf_capacity - self.samples_in_buf >= 2000 {
335 self.try_get_frame = true;
336 }
337 }
338 }
339
340 impl Modulator for SoftModulator {
341 fn update_output_buffer(
342 &mut self,
343 samples_to_play: usize,
344 capacity: usize,
345 output_latency: usize,
346 ) {
347 //log::debug!("modulator update_output_buffer {samples_to_play} {capacity} {output_latency}");
348 self.output_latency = output_latency;
349 self.buf_capacity = capacity;
350 self.samples_in_buf = samples_to_play;
351
352 if self.calculate_tx_end {
353 self.calculate_tx_end = false;
354 // next_transmission should already have been read out to the buffer by now
355 // so we don't have to consider it
356 self.report_tx_end = Some(self.samples_in_buf + self.output_latency);
357 }
358
359 self.request_frame_if_space();
360 }
361
362 fn provide_next_frame(&mut self, frame: Option<ModulatorFrame>) {
363 let Some(frame) = frame else {
364 self.try_get_frame = false;
365 return;
366 };
367
368 self.next_len = 0;
369 self.next_read = 0;
370
371 match frame {
372 ModulatorFrame::Preamble { tx_delay } => {
373 // TODO: Stop assuming 48 kHz everywhere. 24 kHz should be fine too.
374 let tx_delay_samples = tx_delay as usize * 480;
375 // TxDelay and output latency have the same effect - account for whichever is bigger.
376 // We want our sound card DAC hitting preamble right when PTT fully engages.
377 // The modulator calls the shots here - TNC hands over Preamble and asserts PTT, then
378 // waits to be told when transmission will be complete. This estimate will not be
379 // made and delivered until we generate the EOT frame.
380 self.tx_delay_padding = tx_delay_samples.max(self.output_latency);
381
382 // We should be starting from a filter_win of zeroes
383 // Transmission is effectively smeared by 80 taps and we'll capture that in EOT
384 for dibit in generate_preamble() {
385 self.push_sample(dibit);
386 }
387 }
388 ModulatorFrame::Lsf(lsf_frame) => {
389 for dibit in encode_lsf(&lsf_frame) {
390 self.push_sample(dibit);
391 }
392 }
393 ModulatorFrame::Stream(stream_frame) => {
394 for dibit in encode_stream(&stream_frame) {
395 self.push_sample(dibit);
396 }
397 }
398 ModulatorFrame::Packet(packet_frame) => {
399 for dibit in encode_packet(&packet_frame) {
400 self.push_sample(dibit);
401 }
402 }
403 ModulatorFrame::EndOfTransmission => {
404 for dibit in generate_end_of_transmission() {
405 self.push_sample(dibit);
406 }
407 for _ in 0..80 {
408 // This is not a real symbol value
409 // However we want to flush the filter
410 self.push_sample(0f32);
411 }
412 self.calculate_tx_end = true;
413 }
414 }
415 }
416
417 fn read_output_samples(&mut self, out: &mut [i16]) -> usize {
418 let mut written = 0;
419
420 // if we have pre-TX padding to accommodate TxDelay then expend that first
421 if self.tx_delay_padding > 0 {
422 let len = out.len().max(self.tx_delay_padding);
423 self.tx_delay_padding -= len;
424 for x in 0..len {
425 out[x] = 0;
426 }
427 written += len;
428 }
429
430 // then follow it with whatever might be left in next_transmission
431 let next_remaining = self.next_len - self.next_read;
432 if next_remaining > 0 {
433 let len = (out.len() - written).min(next_remaining);
434 out[written..(written + len)]
435 .copy_from_slice(&self.next_transmission[self.next_read..(self.next_read + len)]);
436 self.next_read += len;
437 written += len;
438 }
439
440 written
441 }
442
443 fn run(&mut self) -> Option<ModulatorAction> {
444 // Time-sensitive for accuracy, so handle it first
445 if let Some(end) = self.report_tx_end.take() {
446 return Some(ModulatorAction::TransmissionWillEnd(end));
447 }
448
449 if self.next_read < self.next_len {
450 return Some(ModulatorAction::ReadOutput);
451 }
452
453 if self.update_idle {
454 self.update_idle = false;
455 return Some(ModulatorAction::SetIdle(self.idle));
456 }
457
458 if self.try_get_frame {
459 return Some(ModulatorAction::GetNextFrame);
460 }
461
462 None
463 }
464 }
465
466 #[derive(Debug)]
467 pub(crate) struct DecodeCandidate {
468 burst: SyncBurst,
469 age: u8,
470 diff: f32,
471 gain: f32,
472 shift: f32,
473 }